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p-Effects of Silicon in Directing Fragmentation of Scheme 2

p-Silylcycloalkanone Radical Cations
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Silicon can direct the Norrish type | cleavage @{trimeth- g
ylsilyl)cycloalkanones at the ££C; bond in a highly regiose- 3 B
lective mannet. This photochemical reaction has been applied path A | path B

in organic synthesi%:* Carboradical intermediates generated
therein are stabilized by @-silyl group predominantly through R =H silicon-directed
“o—am hyperconjugation®8

We planned to explore the possibility of using silicon to direct

R = CH,SiMe,

-—

chemical processes involving radical cationic intermediates gener- . + L+
ated from cycloalkanones. An ideal outcome would lead us to © 'c=o0 Cc=o0
obtain a single product bearing synthetically valuable function- Z SiMe,
alities, instead of a mixture containing an ester and an alkenyl 13 18
aldehyde generated through the Norrish type | cleavadgrein H.0 H.0
we report a new silicon-directed fragmentation as shown in ¢ : ¢ ?
Scheme 1, in which the highly regioselective cleavage of the C
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Ce(NH,),(NO,), One-elec_tron ox_|dat|on _ of a carbonyl group to give the
o CH,CN, H,0 corresponding radical cation can be accomplished by use of
" - CAN.21° Thus, we treated a 50% aqueous acetonitrile solution
SiMe 60 C, 30 min .. . .
3 . (20 mL) containing g-(trimethylsilyl)cycloalkanone (2.0 mmol,
10 - 0.10 M) and CAN (2.4 equiv) at various temperatures between
(66%) 25 and 82°C. The optimal conditions were found at 80. Within

. . . 2.0 h, the solution turned from dark brown to pale yellow or
C, bond inj-(trimethylsilyl)cycloalkanones occurred by use of  q|oriess at 60C. Change of the color indicated completion of

ceric ammonium nitrate (CAN) to give the desilylatedalk- the reactions. Workup followed by chromatographic purification

enylcarboxylic acids. affordedw-alkenylcarboxylic acids in 6298% yields (Scheme

" National Tsing Hua University. 1). There was no byproduct detected through the @, bond
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and10. The desired produc® and11 were obtained in 62 and  product 11. As a result, silicon plays a vital role on the

66% yields, respectively. regioselective fragmentation @fsilyl ketones.

Deslongchamps et &t.reported results from the oxidation of In addition to silicon, thgg-effect of tin has also been applied
nonsilylated bicyclic ketond2 by CAN in wet acetonitrile. A 1o direct organic reaction's;** examples include the-€C bond
mixture ofcis- andtrans-cyclonitratocarboxylic acidé6 and17 fragmentations in the BaeyeWilliger reaction and the Beckman

was generated in a 46% overall yield after 1.5 h (Scheme 2). reaction* We planned to realize the diversity of the electronic
The oxidative cleavage occurs at the—, bond, which is effects of these two elements in group IV. Subsequently, 3-(tri-
marked in the nonsilylated ketori@. The regioselective cleavage  N-butyl)stannylcyclopentan-1-one was treated with CAN in wet
of the G—C, bond likely comes from the generation of the @acetonitrile at 60C. We found that destannylation took place to
thermodynamically more stable secondary carboraditaisnd afford 2-cyclopenten-1-one in 81% yield. Furthermore, we
14as well as the carbocatidrb instead of the less stable primary ~ Performed the destannylation on 3-(trbutyl)stannylcyclohexan-
species resulting from cleavage of the-C, bond. Under the ~ 1-one with CAN at 60°C to give 2-cyclohexen-1-one in 85%
same conditions, we convertgesilyl bicyclic ketonel0, through yield. These successful conversions offer a new method by use
cleavage of the G-C, bond therein, to alkenylcarboxylic acid ~ Of & stannyl moiety as a “protective group™. Thus, cycloalkanones
11 in 66% yield. Cleavage of either the,€C, or the G—C, bearing g3-silyl or -stannyl group gave an entirely different cllellss
bond in10would lead to a secondary carboradical. Nevertheless, Of products upon exposure to CAN under the same conditions.
the silyl group at thg8-position toward the carboradical centers [N conclusion, silicon can direct the<C bond cleavage in

in 18 and19 as well as the carbocationic centerd@ exerts an  A-silylcycloalkanones in a highly regioselective manner by use
additional stabilizing effect. The positive charge and the radical, ©f CAN. A single product, w-alkenylcarboxylic acid, was
however, may be switched in the oxygen and carbon centers inproduced in good to excellent yields under mild conditions. In

18; such a radical cationic intermediate would lead to the same comparison with the Norrish type | cleavage, this reaction may
have a greater potential in organic synthesis.
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